UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	31

1	(a) (i)	same number of protons and electrons	[1]
	(ii)	all have the same number of protons / same proton number / same atomic number	[1]
	(iii)	more electrons than protons number of protons and electrons not equal ONLY [1]	[2]
	(iv)	same number of protons (and electrons) / same proton number / same atomic number different number of neutrons / different mass number / nucleon number	er [1] [1]
	(b) (i)	2 + 8 + 5	[1]
	(ii)	3 / 5	[1]
	(iii)	non-metal because it accepts electrons / needs 3e to complete outer energy level / because it is in Group V or 5e in outer shell note need both non-metal and reason for [1]	[1]
		[Tota	ıl: 9]
2	(a) (i)	harder / stronger / any sensible suggestion which relates to better properties for purp e.g. stays sharp longer / cuts better / more corrosion resistant	ose [1]
	(ii)	zinc	[1]
	(b) (i)	lattice	[1]
	(ii)	regular pattern of one type of atom with different atom interspersed can show the difference – size, shading, label etc.	[1] [1]
	(iii)	can change its shape by force / plastically deform / can be hammered into sheets / bend etc.	can [1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	31

	(c)	(i)	$tin(\mathrm{IV})$ oxide + carbon \to tin + carbon dioxide not carbon monoxide as a reductant accept carbon monoxide as a product not $tin(\mathrm{IV})$ accept correct symbol equation	[1]
	((ii)	water carbon dioxide	[1] [1]
	(i	iii)	correct labels for (pure) copper cathode impure copper anode electrolyte copper(II) sulfate / any soluble copper(II) salt / Cu ²⁺ if labels on electrodes reversed [0]	[1] [1] [1]
	(i	iv)	wires / pipes / jewellery / nails / roofing / ammunition / coins / cookware / casculpture	talyst / [1]
			[Tot	tal: 15]
3		(i)	chemical	[1]
	((ii)	from right to left not through salt bridge	[1]
	(i	iii)	$Br_2 + 2e \rightarrow 2Br$ - for Br- as product [1]	[2]
	(i	iv)	reduction because electron gain / because oxidation number decreases need both points	[1]
	((v)	Fe ³⁺	[1]
	()	vi)	any correct discussion of the reactivity of the halogens e.g. the more reactive the halogen the higher the voltage not better conductor	[1]
			TT.	otal: 71

[Total: 7]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	31

4 (a)	(i)	nitrogen 2+5	[1]
	((ii)	needs three electrons to complete energy level	[1] [1]
(b)	(i)	expensive metal / iron cheaper / better catalyst	[1]
	((ii)	high pressure favours side with smaller volume / fewer moles this is right hand side / product / ammonia side	[1] [1]
	(i	iii)	recycled / sent over catalyst again accept used again	[1]
	(i	iv)	advantage high yield disadvantage slow reaction rate etc	[1] [1]
				[Total: 9]
5 (a) ((i)	many (simple) molecules form one (large) molecule / monomer molecules polymer molecule	form one [1]
	(i	ii)	addition - polymer is the only product accept - nX → Xn	[1]
			condensation polymer and simpler molecules formed accept $nX \rightarrow Xn + nHCl/H_2O$	[1]
(b) ((i)	$C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version	[1]
	(i	ii)	ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane	[1]
	(ii	ii)	electrolysis aqueous sodium chloride	[1] [1]
	(iv	v)	must have three correct units cond continuation	[1] [1]
			accept -(CH2-CH(Cl))n-	[Total: 9]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	31

6

7

;	(a) (i)	does not form compounds / does not accept and does not lose electrons / has full outer shell/has 8e in outer shell / it is a Noble Gas / it is in Group 0/8 [1]
	(ii)	small number of outer electrons / lose electrons then positive [1] large number of outer electrons / gain electrons then negative [1]
	(iii)	any two from nitrogen, oxygen and fluorine [1] accept symbols / molecular formulae
	(b) (i)	zinc / aluminium / lead / tin / chromium [1]
	(ii)	white precipitate precipitate dissolves / colourless solution forms / forms a clear solution
		/ soluble in excess [1]
	(c) (i)	LiF [1] NF ₃
	(ii)	LiF has higher mp / bp LiF is a (crystalline) solid, NF ₃ is probably a gas / a liquid / LiF is less volatile as liquids only LiF conducts LiF is soluble in water, NF ₃ is not when both solids LiF is harder
		any two [2]
	(iii)	LiF is an ionic compound [1] NF ₃ is a covalent/molecular compound [1] for stating that one is ionic and the other covalent [1] without specifying which is which
		[Total: 13]
•	(i)	methane / water vapour / oxides of nitrogen / hydrofluorocarbons / perfluorocarbons / ozone [1] not sulfur dioxide
	(ii)	living organisms / plants and animals / cells produce energy (from food / glucose / carbohydrates) this forms carbon dioxide (could be in an equation) [1]
	(iii)	when growing the crop removed carbon dioxide from atmosphere [1] / crop photosynthesised and used carbon dioxide
		combustion returned the carbon dioxide [1]
	(iv)	increased combustion [1] of fossil fuels / named fossil fuel [1]
		or deforestation[1]less photosynthesis[1]
		not greater population [Total: 8]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	31

8 (a) filter / centrifuge / decant [1] (partially) evaporate / heat / boil [1] allow to crystallise / cool / let crystals form [1] dry crystals / dry between filter paper / leave in a warm place to dry [1] "dry" on its own must be a verb evaporate to dryness only marks 1 and 2 note if discuss residue only mark 1 **(b)** number of moles of HCl used = 0.04 × 2 = 0.08 number of moles $CoCl_2$ formed = 0.04 number of moles $CoCl_2.6H_2O$ formed = 0.04 mass of one mole of $CoCl_2.6H_2O = 238 g$ maximum yield of $CoCl_2.6H_2O = 9.52g$ [4] accept 9.5 g mark ecf to moles of HC1 do not mark ecf to integers

to show that cobalt(II) carbonate is in excess

number of moles of HCl used = 0.08 must use value above **ecf** mass of one mole of CoCO $_3$ = 119g number of moles of CoCO $_3$ in 6.0g of cobalt(II) carbonate = 6.0/119 = 0.050 [1] reason why cobalt(II) carbonate is in excess 0.05 > 0.08/2 [1]

[Total: 10]